Nonparametric Permutation Tests for Functional Neuroimaging
نویسندگان
چکیده
منابع مشابه
Nonparametric permutation tests for functional neuroimaging: a primer with examples.
Requiring only minimal assumptions for validity, nonparametric permutation testing provides a flexible and intuitive methodology for the statistical analysis of data from functional neuroimaging experiments, at some computational expense. Introduced into the functional neuroimaging literature by Holmes et al. ([1996]: J Cereb Blood Flow Metab 16:7-22), the permutation approach readily accounts ...
متن کاملPower in Voxel-based Lesion-Symptom Mapping
Lesion analysis in brain-injured populations complements what can be learned from functional neuroimaging. Voxel-based approaches to mapping lesion-behavior correlations in brain-injured populations are increasingly popular, and have the potential to leverage image analysis methods drawn from functional magnetic resonance imaging. However, power is a major concern for these studies, and is like...
متن کاملControlling the familywise error rate in functional neuroimaging: a comparative review.
Functional neuroimaging data embodies a massive multiple testing problem, where 100,000 correlated test statistics must be assessed. The familywise error rate, the chance of any false positives is the standard measure of Type I errors in multiple testing. In this paper we review and evaluate three approaches to thresholding images of test statistics: Bonferroni, random field and the permutation...
متن کاملPermutation tests for factorially designed neuroimaging experiments.
Permutation methods for analysis of functional neuroimaging data acquired as factorially designed experiments are described and validated. The F ratio was estimated for main effects and interactions at each voxel in standard space. Critical values corresponding to probability thresholds were derived from a null distribution sampled by appropriate permutation of observations. Spatially informed,...
متن کاملCommentary: Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates
The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001